Joaquin Vanschoren

Welcome. I am assistant professor of Machine Learning at the Eindhoven University of Technology. My passion is to empower everyone to truly understand and use machine learning. My research focuses on automating machine learning, as well as making it open and collaborative. I founded OpenML.org, a popular online machine learning platform where people can share data, code, models and experiments, and I develop algorithms that learn from all these experiments to help people build better machine learning models, faster.

Curriculum Vitae

×

Email is a wonderful thing for people whose role in life is to be on top of things. But not for me; my role is to be on the bottom of things. - Donald Knuth

Given my demanding roles as a professor and father, I try to stay dedicated to current projects, students and family, and cannot also maintain a general purpose email address. A few tips to make both out lives easier:

- PhD positions: Please check for available opportunities. Otherwise, you'll need to have full financial support of your own.
- MSc Students: For MSc thesis topics and internships or internationalization, please check the links first. Use Canvas for course-related questions.
- Meeting requests / calls: If you really need to talk to me, send a direct request via Calendly (or the TU/e calendar).
- Unsolicited job offers: No thank you (unless it's truly amazing :))

Otherwise, if you do have a topic that you think will really interest me, you can contact me at interesting4joaquingmail.com. I will reply when it is indeed interesting. Thanks!

News

2018.12.02 – Tutorial Speaker @ NIPS 2018

Join us at the Automatic Machine Learning Tutorial! Together with Frank Hutter.

2018.08.28 – Invited Talk @ PRICAI 2018 AutoML Workshop

Looking forward to seeing you in China! Thanks to Isabelle Guyon, Hugo, Wei-wei, Zhanxing, and Yang.

2018.06.15 – Invited Talk @ SIGMOD 2018 DEEM Workshop

Exciting workshop on Data Management for End-to-End Machine Learning. Special thanks to Sebastian Schelter.

2018.02.15 – OpenML mentioned in Science Magazine

Nice article about the difficulty of reproducibility and how OpenAI Gym and OpenML are taking steps in the right direction.

2017.10.12 – Invited Talk @ Dutch National eScience Symposium

I'm speaking in the 'Future of machine learning' track. Thanks to everyone at the eScience Center!

2017.09.01 – Research grant from the Dutch Scientific Research Foundation

Dynamic Data Analytics through automatically Constructed Machine Learning Pipelines. Applications in Parkinson's research and smart grids.

2017.09.01 – Research grant from the DARPA D3M project in collaboration with Stanford Research International (SRI).

The Data-Driven Discovery of Models project develops open-source tools to automate machine learning on any type of data. Pieter Gijsbers is starting his PhD on this topic.

2017.08.11 – Invited Talk @ ICML 2017 - Reproducibility in Machine Learning Workshop

Very lively workshop on reproducibility - a crucial aspect of machine learning research. Thanks so much to Sami Bengio, Anirudh Goyal, and the other organizers for the great discussions.

2016.12.09 – Invited Talk @ NIPS 2016 - Challenges in Machine Learning Workshop

Great workshop on novel forms of running machine learning challenges. Thanks to Isabelle Guyon and the other organizers.

2016.11.11 – Keynote Talk @ Dutch Society for Pattern Recognition

A very inspirational event with many examples of machine learning on medical data. Thanks to Veronika Cheplygina for inviting me!

2016.11.09 – OpenML won the Dutch Data Prize!

Thanks so much to the organizers for stimulating open science through this award, and thanks to the fantastic OpenML team for making it all happen!

2016.10.28 – Open Science Radio has interviewed us (me and Heidi Seibold) about OpenML. Have a listen!

Thanks to Matthias Fromm and Konrad Förstner for running a super-interesting podcast, and for giving us the oportunity to talk about OpenML!

2016.06.22 – Talk @ IBM Watson Research Center, NY

Thanks to Meinolf Sellmann, Horst Samulowitz and Josep Pon for a great day and interesting discussions at IBM.

2015.12.16 – Invited Talk @ Data@Sheffield [Slides]

A tutorial on OpenML targetted at scientists from many domains, at the Open Data Science @ Sheffield workshop and Data Hide event. Many, many thanks to Neil Lawrence and the Open Data Science Initiative for a splendid visit and engaging discussions.

2015.11.17 – Talk @ High Tech Campus Technology Seminar

Short introduction of OpenML, with applications in Healthcare, at the High Tech Campus Eindhoven.

2015.10.22 – Horizon Talk @ IDA 2015 [Slides]

In this Horizon talk, I proposed the idea of a data science collaboratory, where scientists across domains can collaborate effortlessly using each other's data and code. Joint work with Bernd Bischl, Frank Hutter, Michele Sebag, Balazs Kegl, Matthias Schmid, Giulio Napolitano, Katy Wolstencroft, Alan R. Williams, and Neil Lawrence.

2015.08.10 – Invited Talk @ RGU IDEA Seminar

I had the opportunity to present OpenML to the Robert Gordon University CS department and BCS Aberdeen. Thanks to Daniel C. Doolan and Farzan Majdani who made my visit possible. Thanks to Norman Bain for the video.

2015.07.21 – Invited Talk @ Statistical Computing 2015

On networked science, OpenML and using OpenML from statistical environments such as R. Followed by a hands-on tutorial by Giuseppe Casalicchio and Bernd Bischl. Thanks to Matthias Schmid.

2015.07.11 – Invited Talk @ ICML 2015 - AutoML Workshop [Slides]

On OpenML and building systems that learn from machine learning experiments, to assist people while analyzing data, or automate the process altogether. Thanks to Balazs Kegl and Frank Hutter.

2014.10.20 – Successful OpenML 2014 Workshop @ TU/e

Including a 4-day hackathon and great presentations. All presentations archived by the TIB (German National Library for Science and Technology).

2014.08.11 – KDnuggets discusses OpenML

Nice article by Ran Bi.

2014.07.04 – Invited Talk @ ECDA 2014 [Slides]

On open science, machine learning, OpenML and the benefits it brings for machine learning research, individual scientists, as well as students and practitioners.

2014.06.17 – Talk @ VIPx Eindhoven

On designed serendipity, or how discoveries are made by openly sharing data and ideas.

2013.09.20 – Invited Talk @ CLADAG 2013

Presenting the first beta version of OpenML. Thanks to John Shawe-Taylor and the PASCAL 2 Network.

2012.10.23 – HARVEST Grant from the PASCAL 2 Network.

The funding received will support work on OpenML, a new system to automatically share and reuse reproducible machine learning experiments. Together with Bernd Bischl, Luis Torgo, KNIME and RapidMiner.

2012.09.26 – Quest magazine covers our large-scale sensor data analysis research.

BiGGrid also interviewed me and made a nice video.

2012.06.26 – Free Competition research grant from the Dutch Scientific Research Foundation.

The funding received will support work on Massively Collaborative Data Mining. Jan N. van Rijn will start his PhD on this topic.

2012.04.12 – Invited Talk @ Dutch Hadoop User Group (NL-HUG)

Presenting work on large-scale sensor data analysis using Hadoop.

2010.12.07 – Best Application Award @ SARA Hadoop training program

For programming Hadoop procedures for terabyte-scale sensor data analysis.

2009.09.11 – Best Demo Award @ ECMLPKDD 2009

For a demonstration of Experiment Databases for machine learning. Together with Hendrik Blockeel.

Research

Publications

Also see Google Scholar

Journals and journal proceedings

  1. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J. The online performance estimation framework: Heterogeneous Ensemble Learning for Data Streams. Machine Learning, 107 (1), 149-176, 2018
  2. Olier, I., Sadawi, N., Bickerton, G.R., Vanschoren, J., Grosan, C., Soldatova, L., King, R.D. Meta-QSAR: learning how to learn QSARs Machine Learning, 107 (1), 285-311, 2018
  3. Abdulrahman, S, Brazdil, P., van Rijn, J.N., Vanschoren, J. Speeding up Algorithm Selection via Meta-learning and Active Testing. Machine Learning, 107 (1), 79-108, 2018
  4. Casalicchio, G., Hofner, B., Lang, M., Kirchhoff, D., Kerschke, P., Seibold, H., Bossek, J., Vanschoren, J., Bischl, B. OpenML: An R Package to Connect to the Networked Machine Learning Platform. Computational Statistics, 32 (3), 1-15, 2017
  5. Eerikainen, L.M., Vanschoren, J., Rooijakkers, M.J., Vullings, R., Aarts, R.M. Reduction of false arrhythmia alarms using signal selection and machine learning. Physiological Measurement, 37 (8), 1204- 1216, 2016
  6. Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechette, A., Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J. ASlib: A Benchmark Library for Algorithm Selection. Artificial Intelligence, 237, 41-58, 2016
  7. Gao, B., Berendt, B. and Vanschoren, J. Towards understanding online sentiment expression - An interdisciplinary approach with subgroup comparison and visualization. Social Network Analysis and Mining, 6 (1), 68:1-68:16, 2016
  8. van Rijn, J.N., Holmes, G., Pfahringer, B., Vanschoren, J. Having a Blast: Meta-Learning and Heterogeneous Ensembles for Data Streams IEEE Proceedings of ICDM 2015
  9. Vanschoren, J., Bischl, B., Hutter, F., Sebag, M., Kegl, B., Schmid, M., Napolitano, G., Wolstencroft, K., Williams, A.R, Lawrence, N Towards a Data Science Collaboratory Advances in Intelligent Data Analysis XIV (IDA 2015), Lecture Notes in Computer Science 9385, XIX-XXI
  10. van Rijn, J.N., Abdulrahman, S.M., Brazdil, P. and Vanschoren, J. Fast Algorithm Selection Using Learning Curves Advances in Intelligent Data Analysis XIV (IDA 2015), Lecture Notes in Computer Science 9385, 298-309
  11. Vanschoren, J,. van Rijn, J.N. and Bischl, B. Taking machine learning research online with OpenML JMLR Workshop and Conference Proceedings (BigMine 2015), 41, 1-4, 2015
  12. Eerikainen, L.M., Vanschoren, J., Rooijakkers, M.J., Vullings, R., Aarts, R.M. Decreasing the False Alarm Rate of Arrhythmias in Intensive Care Using a Machine Learning Approach IEEE Computing in Cardiology, 42, 293-297, 2015
  13. Gao, B., Berendt, B. and Vanschoren, J. Who is more positive in private? Analyzing sentiment differences across privacy levels and demographic factors in Facebook chats and posts IEEE/ACM Proceedings of ASONAM 2015, 605-610
  14. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Bischl, B. and Carvalho, A.C.P.L.F. To tune or not to tune: Recommending when to adjust SVM hyper-parameters via meta-learning IEEE Proceedings of IJCNN 2015, 1-8
  15. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Bischl, B. and Carvalho, A.C.P.L.F. Effectiveness of Random Search in SVM hyper-parameter tuning IEEE Proceedings of IJCNN 2015, 1-8
  16. van Rijn, J.N., Holmes, G., Pfahringer, B. and Vanschoren, J. Algorithm Selection on Data Streams. Proceedings of Discovery Science 2014. Lecture Notes in Computer Science 8777, 325-336.
  17. Vanschoren, J., van Rijn, J.N., Bischl, B. and Torgo, L. OpenML: networked science in machine learning. ACM SIGKDD Explorations, 15 (2), 49-60, 2013
  18. Serban, F.*, Vanschoren, J.*, Kietz, J.U. and Bernstein, A. A Survey of Intelligent Assistants for Data Analysis. ACM Computing Surveys, 45 (3), Art. 31, 2013
  19. Vanschoren, J., Blockeel, H., Pfahringer, B. and Holmes, G. Experiment Databases: A new way to share, organize and learn from experiments. Machine Learning, 87(2), 127-158, 2012
  20. van Rijn, J., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Winter, P., Wiswedel, B., Berthold, M.R., and Vanschoren, J. OpenML: A Collaborative Science Platform. Proceedings of ECMLPKDD 2013, Lecture Notes in Computer Science 8190, 645-649
  21. Reuttemann, P., Vanschoren, J. Scientific Workflow Management with ADAMS. Proceedings of ECMLPKDD 2012, Lecture Notes in Computer Science 7524, 833-837
  22. Vespier, U., Knobbe, A.J., Nijssen, S., Vanschoren, J. MDL-Based Analysis of Time Series at Multiple Time-Scales. Proceedings of ECMLPKDD 2012, Lecture Notes in Computer Science 7524, 371-386
  23. Leite, R., Brazdil P., Vanschoren, J. Selecting Classification Algorithms with Active Testing. Proceedings of MLDM 2012, Lecture Notes in Computer Science 7376, 117-131
  24. Vespier, U., Knobbe, A., Vanschoren, J., Miao, S., Koopman, A., Obladen, B., and Bosma, C. Traffic Events Modeling for Structural Health Monitoring. Proceedings of IDA 2011, Lecture Notes in Computer Science 7014, 276-387
  25. Vanschoren, J., Blockeel, H. A community-based platform for machine learning experimentation. Proceedings of ECMLPKDD 2009, Lecture Notes In Computer Science 5782, 750-754
  26. Vanschoren, J., Pfahringer, B., Holmes, G. Learning from the past with experiment databases. Proceedings of PRICAI 2008, Lecture Notes in Artificial Intelligence 5351, 485-496
  27. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G. Organizing the world's machine learning information. Proceedings of ISOLA 2008, Communications in Computer and Information Science, 17, 693-708
  28. Vanschoren, J., Blockeel, H. Investigating classifier learning behavior with experiment databases. Proceedings of GfKL 2008, Data Analysis, Machine Learning and Applications, 421-428
  29. Blockeel, H.*, Vanschoren, J.* Experiment databases: Towards an improved experimental methodology in machine learning. Proceedings of ECMLPKDD 2007, Lecture Notes in Computer Science 4702, 6-17
  30. (* Joint first author)

Peer reviewed conference and workshop proceedings

  1. Zhu, Y., Aoun, M., Krijn, M., Vanschoren, J. Data Augmentation using Conditional Generative Adversarial Networks for Leaf Counting in Arabidopsis Plants. CCCPV Workshop @ BMVC 2018.
  2. Gijsbers, P., Vanschoren, J., Olson, R. Layered TPOT: Speeding up Tree-based Pipeline Optimization. AutoML Workshop @ ECML 2017. CEUR Workshop Proceedings vol. 1998.
  3. Mantovani, R.G., Horvath, T., Cerri, R., Carvalho, A.P.L.F., Vanschoren, J. Hyper-parameter Tuning of a Decision Tree Induction Algorithm. Brazilian Conference on Intelligent Systems (BRACIS 2016)
  4. Zhang, C., van Wissen, A., Lakens, D., Vanschoren, J., de Ruyter, B.E.R., IJsselsteijn, W.A. Anticipating habit formation: a psychological computing approach to behavior change support. UbiComp Adjunct, 2016: 1247-1254
  5. Bischl, B., Bossek, J., Casalicchio, G., Hofner, B., Kerschke, P., Kirchhoff, D., Lang, M., Seibold, H., Vanschoren, J. Connecting R to the OpenML project for Open Machine Learning. useR Conference 2016
  6. Abdulrahman, S, Brazdil, P., van Rijn, J.N., Vanschoren, J. Algorithm Selection via Meta-learning and Sample-based Active Testing. MetaSel Workshop @ PKDD/ECML 2015, CEUR Workshop Proceedings 1455, 55-66
  7. Mantovani, R.G., Rossi, A.L.D., Vanschoren, J., Carvalho, A.C.P.L.F. Meta-learning Recommendation of Default Hyper-parameter Values for SVMs in Classification Tasks MetaSel Workshop @ PKDD/ECML 2015, CEUR Workshop Proceedings 1455, 80-92
  8. van Rijn, J.N., Vanschoren, J. Sharing RapidMiner Workflows and Experiments with OpenML. MetaSel Workshop @ PKDD/ECML 2015, CEUR Workshop Proceedings 1455, 93-103
  9. Vukicevic, M., Radovanovic, S., Vanschoren, J., Napolitano, G., Delibasic, B. Towards a Collaborative Platform for Advanced Meta-Learning in Healthcare Predictive Analytics. MetaSel Workshop @ PKDD/ECML 2015, CEUR Workshop Proceedings 1455, 112-114
  10. Knobbe A.J., Meeng M. Vanschoren J., Rees Jones S., Merlo Penning S. Reconstructing Medieval Social Networks from English and Latin Charters. Population Reconstruction 2014
  11. van Rijn, J.N., Holmes, G., Pfahringer, B. and Vanschoren, J. Towards Meta-learning on Data Streams. MetaSel Workshop @ ECAI 2014, CEUR Workshop Proceedings, 1201, 37-38
  12. Vanschoren, J., Braun, M. and Ong, C.S. Open science in machine learning. Proceedings of CLADAG 2013, 462-465.
  13. van Rijn, J., Umaashankar, V., Fischer, S., Bischl, B., Torgo, L., Gao, B., Winter, P., Wiswedel, B., Berthold, M.R., and Vanschoren, J. A RapidMiner extension for Open Machine Learning. Proceedings of RCOMM 2013, 59-70.
  14. van Rijn, J. and Vanschoren, J. OpenML: An Open Science Platform for Machine Learning. Machine Learning Conference of Belgium and The Netherlands 2013, 99-100
  15. Miao S., Vespier U., Vanschoren J. Knobbe A.J., De Gouveia da Costa Cachucho R.E. Modeling Sensor Dependencies between Multiple Sensor Types. Machine Learning Conference of Belgium and The Netherlands 2013, p. 66-73
  16. Vanschoren, J. The Experiment Database for machine learning. PlanLearn Workshop @ ECAI 2012, CEUR Workshop Proceedings, 950, 30-37
  17. Leite, R., Brazdil P., Vanschoren, J. Selecting Classification Algorithms with Active Testing on Similar Datasets. PlanLearn Workshop @ ECAI 2012, CEUR Workshop Proceedings, 950, 30-37
  18. Vespier, U., Knobbe, A., Nijssen, S., Vanschoren, S. MDL-Based Identification of Relevant Temporal Scales in Time Series. Workshop on Information Theoretic Methods in Science and Engineering, WITMSE 2012
  19. Gao, B. and Vanschoren, J. Visualizations of Machine Learning Behavior with Dimensionality Reduction Techniques. Machine Learning Conference of Belgium and The Netherlands 2011, 35-42.
  20. Miao, S., Knobbe, A., Vanschoren, J., Vespier, U., Koopman, A., Cachucho, R., Chen, X. A Range of Data Mining Techniques to Correlate Multiple Sensor Types. Dutch-Belgian Database Day 2011, Art.5
  21. Vanschoren, J., Soldatova, S. Exposé: An Ontology for Data Mining Experiments. Workshop on Third Generation Data Mining @ ECMLPKDD 2010, 31-46
  22. Vanschoren, J., Soldatova, S. Collaborative Meta-Learning. Planning to Learn workshop @ ECAI 2010, 37-46
  23. Vanschoren, J., Blockeel, H. Stand on the shoulders of giants: towards a portal for collaborative experimentation in data mining. 3rd Generation Data Mining Workshop @ ECMLPKDD 2009, 88-99
  24. Bauzá, M., Vanschoren, J., Funes, M.P., Barrera, G.M., López De Luise, D. Sistema de Autentificación Facial. Congreso de Inteligencia Computacional Aplicada (CICA) 2009
  25. Vanschoren, J. Experiment databases for machine learning. NIPS Workshop on Machine Learning Open Source Software @ NIPS 2008
  26. Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G. Experiment databases: Creating a new platform for meta-learning research. Planning to Learn Workshop @ ICML 2008, 10-15
  27. Vanschoren, J., Van Assche, A., Vens, C., Blockeel, H. Meta-learning from experiment databases: An illustration. Machine Learning Conference of Belgium and The Netherlands 2007, 120-127
  28. Vanschoren, J., Blockeel, H. Towards understanding learning behavior. Machine Learning Conference of Belgium and The Netherlands 2006, 89-96

Book chapters

  1. Lawrynowicz, A., Esteves, D., Panov. P., Soru, T., Dzeroski, S., Vanschoren, J An Algorithm, Implementation and Execution Ontology Design Pattern. In: Studies on the Semantic Web (forthcoming), 2016
  2. Vanschoren, J., Vespier, U., Miao, S., Cachucho, R. and Knobbe, A. Large-scale sensor network analysis. In: Big Data Management, Technologies, and Applications (W-C. Hu, N. Kaabouch, ed.), IGI Global, 2013
  3. Vanschoren, J. Meta-learning architectures. In: Meta-learning in Computational Intelligence (N. Jankowski, W. Duch, K. Grabczewski, ed.), Springer, 2011
  4. Berendt, B., Vanschoren, J. and Gao, B. Datenanalyse und -visualisierung. In: Handbuch Forschungsdatenmanagement (S. Büttner, H-C. Hobohm, L. Müller, ed.), Bock+Herchen, 2011
  5. Vanschoren, J., Blockeel, H. Experiment Databases. In: Inductive Databases and Constraint-Based Data Mining (S. Dzeroski, B. Goethals, P. Panov, ed.), Springer, 2010

Books and proceedings edited

  1. Vanschoren, J., Brazdil, P., Giraud-Carrier, C.G., Kotthoff, L. (Eds.) Proceedings of the 2015 International Workshop on Meta-Learning and Algorithm Selection @ ECMLPKDD CEUR Workshop Proceedings 1455, CEUR 2015
  2. Vanschoren, J., Brazdil, P., Soares, C., Kotthoff, L. (Eds.) Proceedings of the 2014 International Workshop on Meta-Learning and Algorithm Selection @ ECAI CEUR Workshop Proceedings 1201, CEUR 2014
  3. Vanschoren, J., Brazdil, P., Kietz, J-U. (Eds.) Proceedings of the International Workshop on Planning to Learn @ ECAI CEUR Workshop Proceedings 950, CEUR 2012
  4. Vanschoren, J., Duivesteijn, W. (Eds.) The Silver Lining. Proceedings of the International Workshop on Learning from Unexpected Results @ ECMLPKDD Leiden University
  5. van der Putten, P.H.W, Veenman, C., Vanschoren, J., Israel, M., Blockeel, H. (Eds.) Proceedings of the 20th Annual Belgian-Dutch Conference on Machine Learning Leiden University, 2011

Dissertations

  1. Vanschoren, J. Understanding Machine Learning Performance with Experiment Databases PhD Thesis, Katholieke Universiteit Leuven, 2010
  2. Vanschoren, J. A framework for high-level perception MSc Thesis, Katholieke Universiteit Leuven, 2005

Invited Talks

  1. OpenML in research and education Workshop on Challenges in Machine Learning @ NIPS 2016 9 December 2016
  2. Democratizing and Automating Machine Learning Dutch Society for Pattern Recognition 11 November 2016
  3. Collaborative Machine Learning IBM Watson Research Center 22 June 2016
  4. Collaborative Machine Learning Open Data Science Sheffield 16 December 2015
  5. Towards a Data Science Collaboratory (Horizon Talk) Intelligent Data Analysis 2015 22 October 2015
  6. Towards Networked and Automated Machine Learning IDEA Seminar, Robert Gordon University 10 August 2015
  7. OpenML: Networked Science in Machine Learning Statistical Computing 2015 21 July 2015
  8. OpenML: A Foundation for Networked and Automatic Machine Learning AutoML Workshop @ ICML 2015 11 July 2015
  9. OpenML: Networked science in machine learning Université Paris-Saclay, INRIA 4 November 2014
  10. OpenML: Open science in machine learning ECDA 2014 4 July 2014
  11. OpenML: Open science in machine learning TU Dortmund, CS Department 30 January 2014
  12. Open science in machine learning CLADAG 2013 20 September 2013
  13. Data Science and sensor data Dutch Hadoop User Group 12 April 2012

Awards

  1. Best Demo Award ECMLPKDD 2009
  2. Best Application Award SARA Hadoop Day 2010

Service

PhD Jury Membership

  1. Jakub Smid, Charles University Prague, Sep 2016
  2. Bo Gao, Katholieke Universiteit Leuven, Dec 2015

Conference organization

  1. General Chair Learning and Intelligent Optimization Conference (LION 2016)
  2. Associate Chair European Conference on Machine Learning (ECMLPKDD 2013)
  3. Program Chair Machine Learning Conference of Belgium and the Netherlands (Benelearn 2011)
  4. Program Chair Machine Learning Conference of Belgium and the Netherlands (Benelearn 2010)

Workshop chair

  1. Configuration and Selection of Algorithms (COSEAL 2016)
  2. Open Machine Learning Developer Workshop (OpenMLdev 2016)
  3. Automatic Machine Learning Workshop (AutoML)
  4. Open Machine Learning @ Lorentz Center (OpenML 2016)
  5. Open Machine Learning (OpenML 2015)
  6. Metalearning and Algorithm Selection @ ECMLPKDD 2015 (MetaSel 2015)
  7. Open Machine Learning (OpenML 2014)
  8. Metalearning and Algorithm Selection @ ECAI 2014 (MetaSel 2014)
  9. The Silver Lining, Learning from Unexpected Results @ ECMLPKDD 2012 (Silver 2012)
  10. Planning to Learn @ ECAI 2012 (PlanLearn 2012)

Journal referee

  • Machine Learning Journal (MLJ)
  • Journal of Machine Learning Research (JMLR)
  • Data Mining and Knowledge Discovery (DaMi)
  • Semantic Web Journal (SWJ)
  • Computational Intelligence (COIN)

Programme committee member

  • ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2016)
  • European Conference on Machine Learning (ECMLPKDD 2012-2015)
  • Extended Semantic Web Conference (ESWC 2011 2015)
  • European Conference on Artificial Intelligence (ECAI 2014)
  • Knowledge Discovery and Information Retrieval (KDIR 2010-2012)

Research visits

  • Robert Gordon University, Aberdeen, UK (August 9-12, 2015)
  • University of Bournemouth, UK (February 16-19, 2015)
  • INRIA-Saclay, Paris, France (November 3-7, 2014)
  • University of Dortmund, Germany (January 27-31, 2014)
  • University of Waikato, New Zealand (February-March 2011)
  • Universities of Geneva and Zurich, Switzerland (June 14-18, 2010)
  • University of Porto, Portugal (June 7-11, 2010)
  • University of Aberystwyth, UK (July-August, 2009)
  • Jozef Stefan Institute, Slovenia (July 4-11, 2009)
  • University of Waikato, New Zealand (March-June, 2008)
  • University of Indiana, USA (August 2004)

Web Technology

The web today is a growing universe of interlinked web pages and web apps, teeming with interactive content. It is the result of the ongoing efforts of an open web community that helps define web technologies, like HTML5, CSS3, Javascript libraries and Web frameworks. This course provides the student with knowledge of and insight into the rapidly evolving field of web technology. The focus is on hands-on experience with a wide variety of these technologies, enabling students to develop their own web applications, from small interactive sites to the next Facebook.

Course details

Please check Canvas for course details and other relevant information.

Foundations of Data Mining

Machine learning is the science of making computers act without being explicitly programmed. Instead, algorithms learn to perform tasks based on (lots of) data. It is so pervasive today that you probably use it dozens of times a day without knowing it, for instance in web search, speech recognition, and (soon) self-driving cars. It is also a crucial component of data-driven industry (Big Data), scientific discovery, and modern healthcare. In this class, you will learn the foundations of how data mining and machine learning work internally, understand when and how to use key concepts and techniques, and gain hands-on experience in getting them to work for yourself. You'll start with learning Python basics, and end up building complex machine learning pipelines and deep learning architectures. You'll also learn about the theoretical underpinnings of data analysis, and leverage that to correctly apply it to tackle new problems.

Course details

Please check Canvas for course details and other relevant information.

The course materials (mainly Jupyter Notebooks) are available on GitHub.

People

Open positions

TA-PhD in machine learning: 5 year position with 30% Teaching Assistance. Are you eager to do a PhD and do you love teaching as well? Get in touch! Exact topic is open.

Research Software Engineer. We're looking for an excellent software engineer to help us on cool machine leaerning projects, including OpenML! Key requirements are a keen interest in Machine Learning, and excellent programming and web development skills.

MSc Thesis Projects, Internships, Capita Selecta

Generally, I am interested in any topic related to automatic machine learning, meta-learning, OpenML, or better understanding machine learning itself. Below are some proposals, but you can contact me about very related topics. Please note that I can only accept a limited number of students at a time. For MSc projects and internships executed at companies, I can only accept topics which have a clear scientific challenge, related to the above topics, and where the availability of good data and company guidance is guaranteed.

  • Off-season. Check back in the new academic year

Current students

Graduate students and PhD students are the heart of the creative research and development work. At present I’m fortunate to work with the following PhD and Master students:

  • Pieter Gijsbers, PhD Student, A General Automated Machine learning Assistant
  • Bilge Celik, PhD Student, Automatic Machine Learning on Evolving Data Streams
  • Chao Zhang, PhD Student, e-Coaching for Continuous Personal Health
  • Yandre Lozano, PDEng Student, Predictive Maintenance for Smart Working Environments

Former Doctoral students

  • Jan N. Van Rijn, PhD, Meta-learning on Stream data and OpenML
  • Rafael Mantovani, PhD, Meta-learning and Optimization
  • Karthik Srinivasan, PDEng, Preventing Burglaries and Other Incidents, TU Eindhoven, 2014-2015.

Former Master students

  • Joana Iljazi, Deep learning for image-based prediction of plant growth, 2016-2017
  • Aditya Bhadoria, Machine learning strategies for forecasting plant growth based on time-series data, 2016-2017
  • Shefali Chand, Anomaly Detection in Wireless Mesh Lighting Networks, 2016-2017
  • Jun Lin, A comparative study of recommendation algorithms in educational service, 2016-2017
  • Sjoerd van Bavel, Predicting Heat Capacity in Greenhouses, 2016-2017
  • Roy Haanen, Predicting Aircraft Performance on Final Approach, 2015-2016
  • Chung-Kit Lee, Burglary Prediction Model, 2015-2016
  • Hilda F. Bernard, Enhanced Sleepiness Prediction with Improved Algorithm Selection and Hyperparameter optimization, 2015-2016
  • Mikhail Evchenko, Frugal Learning: Applying Machine Learning with Minimal Resources, 2015-2016
  • Kris van Tienhoven, Gamification for OpenML, 2015-2016
  • Ruben Moonen, Object Recognition Framework using information retrieval and machine learning techniques, 2013-2014
  • Anton den Hoed, MapReduce Algorithms for Time Series Data, 2011-2012
  • Mohammed Alaeikhanehshir, Data mining to improve customer service, 2011-2012
  • Thomas De Craemer, Algorithm for a Recommendation Engine, 2010-2011
  • Wouter Deroey, Semi-automated Corpus-based Ontology Population, 2010-2011
  • Xushuang Gao, Active meta-learning, 2009-2010
  • Bo Gao, Advanced visualizations for learning behavior, 2009-2010
  • Jeroen Peelaerts, Visualizing learning behavior, 2007-2008
  • Jan Callewaert, Simulating Biologically Inspired Brood Sorting in Ant-Like Agents, 2005 - 2006
  • Anton Dries, DM_square, Analysis of Data Mining Results Through Data Mining, 2005 - 2006